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Abstract Graphene nanoflakes (GNFs) are predicted to possess novel magnetic,
optical, and spintronic properties. They have recently been synthesized and a number
of applications are being studied. Here we investigate the statistical properties of rip-
pled GNFs (50–5,000 atoms) at T = 300 K. An adjacency matrix is calculated from the
coordinates and we find that the free energy, enthalpy, entropy, and atomic displace-
ment all show power law behavior. The vibrational energy versus the Wiener index
also shows power law character. We distinguish between using Euclidean topograph-
ical indices and compare them to topological ones. These properties are determined
from atomic coordinates using MATLAB routines.
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1 Introduction

Graphene [1] is a 2D allotrope of carbon [diamond, graphite, fullerene, carbon nan-
otubes, (CNTs)] that has been found to have exceptional electronic and mechanical
properties. Recently, scientists have started considering limiting the size of the 2D
sheet form of graphene, thus defining graphene nanoribbons, GNRs, and graphene
nanoflakes, GNFs. One experimental method of attempting this is by using catalytic
metal nanoparticles [2] cutting along crystallographic planes. When restricting the 2D
sheet character of graphene by two dimensions in the plane, one creates GNFs, which
theory predicts to have unique magnetic, optical, and spintronic properties.
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GNFs may have a range of magnetic character, from ferromagnetic [3,4], to ferri-
magnetic [5,6], to antiferromagnetic [7], depending on GNF geometry and topological
frustration. These properties have enabled the design of spintronic NOR and NAND
gates [7], which in principle can operate at room temperature. A spin-valve type effect
[8] has been investigated in triangular GNFs. Additionally, hydrogenation can change
the magnetic and electronic [9] character of the GNF. The optical properties of GNFs
span the entire visible spectrum [10], opening the route to new nano optical devices.
The electronic band structure as a function of increasing size [11] of triangular GNFs
shows that semiconducting behavior exists for small GNFs.

An interesting question to consider when thinking about the thermal character of
GNFs, is whether they are actually stable, or would they transform to another form
of carbon, such as the fullerene or CNT shapes? This question has been modeled by
density functional theory (DFT) and ab initio molecular dynamics (MD) calculations,
with the result [12,13] that GNFs do not transform to a different allotrope, but neither
are they truly 2D, in the sense that the structure of the GNF becomes buckled and
rippled at elevated temperatures. Annealing of the structures [12] found out-of-plane
distortions as the temperature increased to 2,400 K, but no fundamental change in
structure occurred.

Experimentally, the progress in creating GNFs is behind that of theoretical model-
ing. GNFs have been created using a ‘top-down’ approach from exfoliation of graphite
[14], to chemical vapor deposition [15,16], to arc-discharged material [17]. Among
the properties examined, electron field emission has predominated [14,16]. To date, a
true nanoengineering ‘bottom-up’ approach remains open to development, although
some progress [18,19] has been made, especially for GNRs [20]. Thus, the truly exotic
properties of GNFs, such as those already mentioned, remain to be explored.

2 Methods

Here we represent GNFs as graphs G = (V, E) where nodes represent atoms and
edges represent physical interactions between those atoms. We create a graph of the
GNF by creating bonds (links) between nearest neighbors up to 1.3 times the shortest
neighbor distance from rippled MD models of graphene [21]. These vary from 50 to
5,000 atoms and as created, are the asymmetric form [12] of a GNF. The entries of the
adjacency matrix are given by

A =
{

H(rc − ri j ) i �= j
0 i = j

(1)

where the Heaviside step function H(rc − ri j) = 1 if rc < 1.3∗ (shortest distance
to ri j ), and i and j represent atomic sites, and rc is the cutoff value. We also use the
actual Euclidean distances in the adjacency matrix [22,23], so that H(rc − ri j ) = ei j ,
the Euclidean distance between atoms.

We use a standard approach to modeling the entropy, free energy, and enthalpy as
discussed in the literature [24,25]. These can all be determined from the appropriate
adjacency matrix. The Wiener index [26], is calculated as

123



J Math Chem (2013) 51:1221–1230 1223

Fig. 1 MATLAB plot of a 3D rippled GNF with 500 atoms

W = 1

2

n∑
i=1

n∑
j=1

di j (2)

where n is the number of atoms and di j is the shortest path distance between atoms i
and j in the molecular graph. Most commonly, the distances between atoms di j = 1,
and in the Euclidean form [22], di j = ei j , so that we calculate WE , the Euclidean 3D
Wiener index. Atomic coordinates are used to generate the adjacency matrix and the
statistical calculations proceed from a MATLAB routine.

3 Results

In Fig. 1, we show a plot of a rippled GNF with 500 atoms. In our modeling, the edge
and corner atoms exist as shown in the figure, and as tabulated for the 50–5,000 atom
structures in Table 1. The coordination number of the GNF, NC , increases from 2.44
to 2.9404. The bond length varies around 1.42 Å. A histogram of the various bond
lengths in the 500–5,000 atom GNFs is shown in Fig. 2, and the bond lengths range
from 1.33 to 1.52 Å.

The adjacency matrix allows us to calculate the statistical mechanics parameters in
a standard way [23,24]. The partition function is

Z(G, β) = Tr(eβA) (3)
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Table 1 N is the number of atoms in the GNF, N1, N2, and N3, are the number of one, two, and threefold
coordinated atoms in the GNF, and NC is the coordination number

N N1 N2 N3 NC Ave bond Å

50 5 18 27 2.44 1.4248

100 7 26 67 2.60 1.4219

500 16 62 422 2.812 1.4228

1,000 22 86 892 2.87 1.4229

2,500 35 138 2,327 2.9168 1.4239

5,000 50 198 4,752 2.9404 1.4238

The average bond length is in Angstroms

Fig. 2 Histogram of the bond lengths (in Angstroms) of the 500–5,000 GNFs

where A is the adjacency matrix for the graph G, and β = 1/(kBT). At T = 300 K,
we have β = 38.68173/eV. The entropy can be determined as

S(G, β) = −kB

∑
j

λ j p j + kB ln(Z)
∑

j

p j (4)

where λ j is an eigenvalue of A and

p j = eβλ j

Z(G, β)
(5)
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is the probability that the ensemble occupies a microstate j . The free energy is the
natural logarithm of the partition function,

F(G, β) = − ln Z(G, β)

β
(6)

and the enthalpy can be defined as follows

H(G, β) = − 1

Z(G, β)
Tr(AeβA). (7)

We then plot the free energy, enthalpy, and entropy, per bond, versus the number of
bonds in the GNF. This results in plots with good power law [27] regression statistics
as shown in Fig. 3. The distinction between Fig. 3a, b is that in (a), we have used
an adjacency matrix with Euclidean distances, and in (b), we have used the standard
adjacency matrix with zeros and ones. The best-fit equations in (a) have different
leading coefficients, so that the entropy and enthalpy coincide (neglecting the sign
difference) for small (50 atoms) GNFs, and since the slope is different, the plots
diverge for larger GNFs. Since we use a value of the Boltzmann constant in terms of
eV, the values of our thermodynamic calculations for the state of NB = 1 and N = 2
are: entropy, 1.3272 eV/K, enthalpy, −2.6674 eV, and free energy, −0.0883 eV. These
quantities are divided by the number of bonds in the GNF and plotted versus NB , to
give a power law plot. The asymptote of zero for large NB makes intuitive sense, since
if we imagine the data/bond is finite, then as the number of bonds becomes large, we
have zero as a limit. Note that the free energy and enthalpy have their signs reversed
to allow them to be plotted.

We now proceed to calculate some related parameters of interest. In the harmonic
approximation [28], the frequency of the stretching vibration of a carbon-carbon bond
is given by

ν = 1

2π

√
k

μ
(8)

where k is the force constant (about 305 N/m for graphene [29]) between nearest
neighbor carbon atoms and μ is the reduced mass. The total intramolecular energy,
Eint can be divided into two parts; a variable term Uvar and a constant term Ucon . We
conclude that the variable term can be written [28] as

U ∼=
∑ 1√

M1 M2/M
(9)

where the proportionality constant depends on the force constant, but not the mass
dependence. If we rewrite this in terms of our GNF, we have

U =
∑ √

n

Cn1n2
(10)
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a

b

Fig. 3 Plots of the free energy, enthalpy, and entropy/bond versus the number of bonds. The data clearly
exhibits power law character. a This plot uses a Euclidean adjacency matrix. b This plot uses a standard
adjacency matrix
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Fig. 4 Vibrational energy, U, versus the standard Wiener index, W, and the 3D Euclidean Wiener index
WE . The data follows a power law

where n = n1 + n2, and n1 and n2 are the number of carbon atoms on the two sides
of the vibrating bond. We may compare this to the relationship [26,28] for the Wiener
index

W =
∑

n1n2. (11)

Now in order to linearize U, we note that the minimum and maximum values of the
product n1n2 are (n − 1) and (n/2)2, respectively. The middle value is

ξ = n2

8
+ n − 1

2
(12)

and we expand U as a power function about x = ξ

(Cx)−1/2 ≈ f (ξ) + f ′(ξ)(x − ξ) (13)

where

f (ξ) = 1√
C

√
8n

n2 + 4n − 4
. (14)
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Fig. 5 Power law plots of NB , U, W, and <XX> versus the number of carbon atoms, N. The statistics and
regression of the data are quite good

If we write C = 12 amu, then to a first approximation we have

U ≈ 1√
12

NB

√
8n

n2 + 4n − 4
(15)

Since n is the number of atoms in the GNF and we calculate NB through each iteration
of the MATLAB program, we can determine the approximate values for U. Now both
U and W have power law character, so we plot U versus W and WE in Fig. 4. These
results show good regression features. The only distinction is that WE has slightly
larger values, but behaves in the same manner as W. The MATLAB code for W has
been examined previously [30], but we have adapted it to work with an adjacency
matrix.

In the harmonic approximation, we may also consider the vibrational excitation
energy from the static position of the GNF. Previous calculations [31], show that the
summed displacement may be calculated as

〈Xi Xi 〉 =
√∑n

i=1
(�xi )2 =

√
W

nkβ
(16)
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where β = 38.68173/eV, k is the force constant between carbon atoms (305 N/m),
n is the number of atoms, and W is the Wiener index. In Fig. 5, we show the dependence
of NB , U, W, and <XX> on the number of carbon atoms N. The values of the summed
displacement range from 0.4760 to 14.7106 Å for 50–5,000 atoms, respectively. If we
were to consider the average displacement per bond, the values would be 0.0039 and
0.000747 Å, for 50 and 5,000 atoms, respectively. The data all show good regression
features.

4 Conclusion

We have determined the power law behavior of the free energy, enthalpy, entropy,
and atomic displacement of GNFs consisting of 50–5,000 atoms at T = 300 K. The
vibrational energy versus the Wiener index also shows power law character. There
are some minor distinctions when using the Euclidean Wiener index, which we have
included for completeness.
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